首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:NEURAL NETWORK APPLICATION FOR MONTHLY PRECIPITATION DATA RECONSTRUCTION
  • 本地全文:下载
  • 作者:Zohre Khorsandi ; Mohammad Mahdavi ; Ali Salajeghe
  • 期刊名称:Journal of Environmental Hydrology (ältere Jahrgänge)
  • 印刷版ISSN:1058-3912
  • 电子版ISSN:1996-7918
  • 出版年度:2011
  • 卷号:19
  • 出版社:IAEH
  • 摘要:The need for precipitation data and the importance of its duration in hydrological and climatic phenomena motivate investigators to develop reconstruction methods. Four methods are artificial neural network, normal ratio, inverse distance weighting, and geographical coordinate. These methods are compared in this study using monthly precipitation data of three stations, Dolat-Abad, Kabootar-Abad and Refinery plant around the city of Esfahan, Iran. Mean absolute error and coefficient of correlation of the results are compared to select the most appropriate method. The neural network approach shows the best performance compared with the other methods.
国家哲学社会科学文献中心版权所有