首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Privacy Preserving Categorical Data Analysis with Unknown Distortion Parameters
  • 本地全文:下载
  • 作者:Ling Guo ; Xintao Wu
  • 期刊名称:Transactions on Data Privacy
  • 印刷版ISSN:1888-5063
  • 电子版ISSN:2013-1631
  • 出版年度:2009
  • 卷号:2
  • 期号:3
  • 页码:185-205
  • 出版社:IIIA-CSIC
  • 摘要:

    Randomized Response techniques have been investigated in privacy preserving categorical data analysis. However, the released distortion parameters can be exploited by attackers to breach privacy. In this paper, we investigate whether data mining or statistical analysis tasks can still be conducted on randomized data when distortion parameters are not disclosed to data miners. We first examine how various objective association measures between two variables may be affected by randomization. We then extend to multiple variables by examining the feasibility of hierarchical loglinear modeling. Finally we show some classic data mining tasks that cannot be applied on the randomized data directly.

国家哲学社会科学文献中心版权所有