首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Privacy Preserving Aggregation of Secret Classifiers
  • 本地全文:下载
  • 作者:Gérald Gavin ; Julien Velcin ; Philippe Aubertin
  • 期刊名称:Transactions on Data Privacy
  • 印刷版ISSN:1888-5063
  • 电子版ISSN:2013-1631
  • 出版年度:2011
  • 卷号:4
  • 期号:3
  • 页码:167-187
  • 出版社:IIIA-CSIC
  • 摘要:

    In this paper, we address the issue of privacy preserving data-mining. Specifically, we consider a scenario where each member j of T parties has its own private database. The party j builds a private classifier hj for predicting a binary class variable y. The aim of this paper consists of aggregating these classifiers hj in order to improve individual predictions. More precisely, the parties wish to compute an efficient linear combination over their classifier in a secure manner.

国家哲学社会科学文献中心版权所有