期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2013
卷号:2013
DOI:10.1155/2013/865154
出版社:Hindawi Publishing Corporation
摘要:Low data delivery efficiency and high energy consumption are the inherent problems in Underwater Wireless Sensor Networks (UWSNs) characterized by the acoustic channels. Existing energy-efficient routing algorithms have been shown to reduce energy consumption of UWSNs to some extent, but still neglect the correlation existing in the local data of sensor nodes. In this paper, we present a Multi-population Firefly Algorithm (MFA) for correlated data routing in UWSNs. We design three kinds of fireflies and their coordination rules in order to improve the adaptability of building, selecting, and optimization of routing path considering the data correlation and their sampling rate in various sensor nodes. Different groups of fireflies conduct their optimization in the evolution in order to improve the convergence speed and solution precision of the algorithm. Moreover, after the data packets are merged during the process of routing path finding, MFA can also eliminate redundant information before they are sent to the sink node, which in turn saves energy and bandwidth. Simulation results have shown that MFA achieves better performance than existing protocols in metrics of packet delivery ratio, energy consumption, and network throughput.