首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Boosting-based Multi-label Classification
  • 本地全文:下载
  • 作者:Tomasz Kajdanowicz ; Przemyslaw Kazienko
  • 期刊名称:Journal of Universal Computer Science
  • 印刷版ISSN:0948-6968
  • 出版年度:2013
  • 卷号:19
  • 期号:4
  • 页码:502
  • 出版社:Graz University of Technology and Know-Center
  • 摘要:Multi-label classification is a machine learning task that assumes that a data instance may be assigned with multiple number of class labels at the same time. Modelling of this problem has become an important research topic recently. This paper revokes AdaBoostSeq multi-label classification algorithm and examines it in order to check its robustness properties. It can be stated that AdaBoostSeq is able to result with quite stable Hamming Loss evaluation measure regardless of the size of input and output space.
  • 关键词:AdaBoostSeq; boosting; machine learning; multi-label classification
国家哲学社会科学文献中心版权所有