We systematically examine whether a number of classes of lambda-term-graphs have this property, and we find a particular class of lambda-term-graphs that satisfies this criterion. Term graphs of this class are built from application, abstraction, variable, and scope-delimiter vertices, and have the characteristic feature that the latter two kinds of vertices have back-links to the corresponding abstraction.
This result puts a handle on the concept of subterm sharing for higher-order term graphs, both theoretically and algorithmically: We obtain an easily implementable method for obtaining the maximally shared form of lambda-ho-term-graphs. Furthermore, we open up the possibility to pull back properties from first-order term graphs to lambda-ho-term-graphs, properties such as the complete lattice structure of bisimulation equivalence classes with respect to the sharing order.