首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:A Novel Multi label Text Classification Model using Semi supervised learning
  • 本地全文:下载
  • 作者:Shweta C. Dharmadhikari ; Maya Ingle ; Parag Kulkarni
  • 期刊名称:International Journal of Data Mining & Knowledge Management Process
  • 印刷版ISSN:2231-007X
  • 电子版ISSN:2230-9608
  • 出版年度:2012
  • 卷号:2
  • 期号:4
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Automatic text categorization (ATC) is a prominent research area within Information retrieval. Through this paper a classification model for ATC in multi-label domain is discussed. We are proposing a new multi label text classification model for assigning more relevant set of categories to every input text document. Our model is greatly influenced by graph based framework and Semi supervised learning. We demonstrate the effectiveness of our model using Enron , Slashdot , Bibtex and RCV1 datasets. Our experimental results indicate that the use of Semi Supervised Learning in MLTC greatly improves the decision making capability of classifier.
  • 关键词:Automatic text categorization; Multi-label text classification; graph based framework ; semi supervised;learning.
国家哲学社会科学文献中心版权所有