Despite the great success of quantum mechanics, questions regarding its application still exist and the boundary between quantum and classical mechanics remains unclear. Based on the philosophical assumptions of macrorealism and noninvasive measurability, Leggett and Garg devised a series of inequalities (LG inequalities) involving a single system with a set of measurements at different times. Introduced as the Bell inequalities in time, the violation of LG inequalities excludes the hidden-variable description based on the above two assumptions. We experimentally investigated the single photon LG inequalities under decoherence simulated by birefringent media. These generalized LG inequalities test the evolution trajectory of the photon and are shown to be maximally violated in a coherent evolution process. The violation of LG inequalities becomes weaker with the increase of interaction time in the environment. The ability to violate the LG inequalities can be used to set a boundary of the classical realistic description.
.© 2011 Macmillan Publishers Limited. All rights reserved