首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A Shadow Dynamic Finite State Machine for Branch Prediction: An Alternative for the 2-bit Saturating Counter
  • 本地全文:下载
  • 作者:S. Abdel-Hafeez ; A. Gordon-Ross ; A. Albosul
  • 期刊名称:Informatica
  • 印刷版ISSN:1514-8327
  • 电子版ISSN:1854-3871
  • 出版年度:2011
  • 卷号:35
  • 期号:2
  • 出版社:The Slovene Society Informatika, Ljubljana
  • 摘要:We propose an adaptive learning machine-based branch predictor – the shadow dynamic finite state machine (SDFSM) – that enables more accurate branch predictions by learning unique branching patterns through a self-modifying technique. SDFSM states represent branch pattern bits. If a state mispredicts a branch, the state is swapped with its shadow state, which represents the correct branching pattern bit. Therefore, the prediction accuracy can reach 100% if the number of states matches a branch’s pattern length. When compared to a 2-bit saturating counter using bimodal branch predictors, the SDFSM decreases average misprediction rates by 18.3%, with individual decreases as high as 55%.
  • 关键词:branch predictor; bimodal; finite state machine; SDFSM; SPEC2000; saturated counter; SimpleScalar
国家哲学社会科学文献中心版权所有