期刊名称:International Journal of Soft Computing & Engineering
电子版ISSN:2231-2307
出版年度:2011
卷号:1
期号:2
页码:62-67
出版社:International Journal of Soft Computing & Engineering
摘要:The problem of mining association rules has attracted lots of attention in the research community. Several techniques for efficient discovery of association rule have appeared. With abundant literature published in research into frequent itemset mining and deriving association rules, if the question is raised that whether we have solved most of the critical problems related to frequent itemset mining and association rule discovery. Based on the scope of the recent literature, the answer will be negative. The most time consuming operation in discovering association rule, is the computation of the frequency of the occurrences of interesting subset of items (called candidates) in the database of transactions. Can one develop a method that may avoid or reduce candidate generation and test and utilize some novel data structures to reduce the cost in frequent pattern mining? This is the motivation of my study for mining frequent-itemsets and association rules. In this paper we review some existing algorithms for frequent itemset mining and present a proposal of our new approach.