期刊名称:International Journal of Computer Science and Information Technologies
电子版ISSN:0975-9646
出版年度:2011
卷号:2
期号:5
页码:1862-1866
出版社:TechScience Publications
摘要:Data clustering is an important technique for exploratory data analysis and has been the focus of substantial research in several domains for decades among which Sampling has been recognized as an important technique to improve the efficiency of clustering. However, with sampling applied, those points that are not sampled will not have their labels after the normal process. Although there is a straightforward approach in the numerical domain, the problem of how to allocate those unlabeled data points into proper clusters remains as a challenging issue in the categorical domain. In this paper, a mechanism named Maximal Resemblance Data Labeling (abbreviated as MARDL) is proposed to allocate each unlabeled data point into the corresponding appropriate cluster based on the novel categorical clustering representative, namely, N-Node set Importance Representative(abbreviated as NNIR), which represents clusters by the importance of the combinations of attribute values. MARDL has two advantages: 1) MARDL exhibits high execution efficiency. 2) MARDL can achieve high intra cluster similarity and low inter cluster similarity, which are regarded as the most important properties of clusters, thus benefiting the analysis of cluster behaviors. MARDL is empirically validated on real and synthetic data sets and is shown to be significantly more efficient than prior works while attaining results of high quality.