期刊名称:International Journal of Computer Science, Engineering and Applications (IJCSEA)
印刷版ISSN:2231-0088
电子版ISSN:2230-9616
出版年度:2011
卷号:1
期号:6
出版社:Academy & Industry Research Collaboration Center (AIRCC)
摘要:The generation of effective feature-based rules is essential to the development of any intelligent system. This paper presents an approach that integrates a powerful fuzzy rule generation algorithm with a rough set-assisted feature reduction method to generate diagnostic rule with a certainty factor. Certainty factor of each rule is calculated by considering both the membership value of each linguistic term introduced at time of fuzzyfication of data as well as possibility values, due to inconsistent data, generated by rough set theory at time of rule generation. In time of knowledge inferencing in an intelligent system, certainty factor of each rule will play an important role to find out the appropriate rule to be selected. Experimental results demonstrate the superiority of our approach.