出版社:Academy & Industry Research Collaboration Center (AIRCC)
摘要:Neural Networks are one of many data mining analytical tools that can be utilized to make predictions for medical data. Model selection for a neural network entails various factors such as selection of the optimal number of hidden nodes, selection of the relevant input variables and selection of optimal connection weights. This paper presents the application of hybrid model that integrates Genetic Algorithm and Back Propatation network(BPN) where GA is used to initialize and optmize the connection weights of BPN . Significant feactures identified by using two methods :Decision tree and GA-CFS method are used as input to the hybrid model to diagonise diabetes mellitus. The results prove that, GA-optimized BPN approach has outperformed the BPN approach without GA optimization. In addition the hybrid GA-BPN with relevant inputs lead to further improvised categorization accuracy compared to results produced by GA-BPN alone with some redundant inputs.