首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Protein Structure Prediction Using Support Vector Machine
  • 本地全文:下载
  • 作者:Anil Kumar Mandle ; Pranita Jain ; Shailendra Kumar Shrivastava
  • 期刊名称:International Journal on Soft Computing
  • 电子版ISSN:2229-7103
  • 出版年度:2012
  • 卷号:3
  • 期号:1
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Support Vector Machine (SVM) is used for predict the protein structural. Bioinformatics method use to protein structure prediction mostly depends on the amino acid sequence. In this paper, work predicted of 1- D, 2-D, and 3-D protein structure prediction. Protein structure prediction is one of the most important problems in modern computation biology. Support Vector Machine haves shown strong generalization ability protein structure prediction. Binary classification techniques of Support Vector Machine are implemented and RBF kernel function is used in SVM. This Radial Basic Function (RBF) of SVM produces better accuracy in terms of classification and the learning results.
  • 关键词:Bioinformatics; Support Vector Machine; protein folding; protein structure prediction.
国家哲学社会科学文献中心版权所有