期刊名称:International Journal of Energy and Environment
印刷版ISSN:2076-2895
电子版ISSN:2076-2909
出版年度:2010
卷号:1
期号:4
页码:643-656
出版社:International Energy and Environment Foundation (IEEF)
摘要:The polyvinylidene fluoride-sulfonated polystyrene composite membrane with proton exchange performance, denoted as PVDF-SPS, was prepared using a thermally induced polymerization technique. The thermal stability of the PVDF-SPS composite membrane was investigated using thermogravimetric (TG) analysis. The complex formation of the composite membrane was ascertained by Fourier transform infrared spectroscopy (FTIR). The surface compositions of the PVDF-SPS membrane were analyzed using X-ray photoelectron spectroscopy (XPS). The morphology of the composite membrane was characterized by environmental scanning electron microscopy (ESEM). The proton conductivity of the PVDF-SPS membrane was measured using impedance spectroscopy in the hydrated condition. The PVDF-SPS membrane has a stronger hydrophilic character than the pristine PVDF membrane and the polyvinylidene fluoride-polystyrene composite membrane (PVDF-PS), which is caused by the incorporation of sulfonic acid groups. The proton conductivity and the methanol permeability of the PVDF-SPS membrane measured at 298 K are 29.3 mS.cm-1 and 8.6×10-8 cm2.s-1, respectively. Although PVDF-SPS composite membrane possesses the lower oxidative stability than Nafion-117 membrane, the composite membrane displays lower methanol permeability than the Nafion-117 membrane, and the selectivity (the ratio of proton conductivity and methanol permeability) of the composite membrane is almost 20 times than that of Nafion-117.