首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Clustering Moving Objects Using Segments Slopes
  • 本地全文:下载
  • 作者:Omnia Ossama ; Hoda M. O. Mokhtar ; Mohamed E. El-Sharkawi
  • 期刊名称:International Journal of Database Management Systems
  • 印刷版ISSN:0975-5985
  • 电子版ISSN:0975-5705
  • 出版年度:2011
  • 卷号:3
  • 期号:1
  • DOI:10.5121/ijdms.2011.3103
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Given a set of moving object trajectories, we show how to cluster them using k-means clustering approach. Our proposed clustering algorithm is competitive with the k-means clustering because it specifies the value of “k” based on the segment’s slope of the moving object trajectories. The advantage of this approach is that it overcomes the known drawbacks of the k-means algorithm, namely, the dependence on the number of clusters (k), and the dependence on the initial choice of the clusters’ centroids, and it uses segment’s slope as a heuristic to determine the different number of clusters for the k-means algorithm. In addition, we use the standard quality measure (silhouette coefficient) in order to measure the efficiency of our proposed approach. Finally, we present experimental results on both real and synthetic data that show the performance and accuracy of our proposed technique
  • 关键词:Given a set of moving object trajectories; we show how to cluster them using k-means;clustering approach. Our proposed clustering algorithm is competitive with the k-means clustering;because it specifies the value of “k” based on the segment’s slope of the moving object trajectories. The;advantage of this approach is that it overcomes the known drawbacks of the k-means algorithm; namely;the dependence on the number of clusters (k); and the dependence on the initial choice of the clusters’;centroids; and it uses segment’s slope as a heuristic to determine the different number of clusters for the;k-means algorithm. In addition; we use the standard quality measure (silhouette coefficient) in order to;measure the efficiency of our proposed approach. Finally; we present experimental results on both real;and synthetic data that show the performance and accuracy of our proposed technique
国家哲学社会科学文献中心版权所有