首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Multipulse Heteroclinic Orbits and Chaotic Dynamics of the Laminated Composite Piezoelectric Rectangular Plate
  • 本地全文:下载
  • 作者:Minghui Yao ; Wei Zhang
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1155/2013/958219
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper investigates the multipulse global bifurcations and chaotic dynamics for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate by using an energy phase method in the resonant case. Using the von Karman type equations, Reddy’s third-order shear deformation plate theory, and Hamilton’s principle, the equations of motion are derived for the laminated composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. Applying the method of multiple scales and Galerkin’s approach to the partial differential governing equation, the four-dimensional averaged equation is obtained for the case of 1 : 2 internal resonance and primary parametric resonance. The energy phase method is used for the first time to investigate the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric rectangular plate. The paper demonstrates how to employ the energy phase method to analyze the Shilnikov type multipulse heteroclinic bifurcations and chaotic dynamics of high-dimensional nonlinear systems in engineering applications. Numerical simulations show that for the nonlinear oscillations of the laminated composite piezoelectric rectangular plate, the Shilnikov type multipulse chaotic motions can occur. Overall, both theoretical and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists.
国家哲学社会科学文献中心版权所有