首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Dimensionality Reduction for Optimal Clustering In Data Mining
  • 本地全文:下载
  • 作者:Ch. Raja Ramesh ; DVManjula ; Dr. G. Jena
  • 期刊名称:International Journal on Computer Science and Engineering
  • 印刷版ISSN:2229-5631
  • 电子版ISSN:0975-3397
  • 出版年度:2011
  • 卷号:3
  • 期号:10
  • 页码:3355-3358
  • 出版社:Engg Journals Publications
  • 摘要:Spectral clustering and Leader�s algorithm have both been used to identify clusters that are nonlinearly separable in input space. Despite significant research, these methods have remained only loosely related. Sigmoid kernel and polynomial kernel were quite popular for support vector machines due to its origin from clustering. In this paper we are submitting the comparison of above kernel methods after reducing the dimensions using feature functions. For this we have given hand writing data -sets to create and compare the clusters.
  • 关键词:Sigmoid; polynomial; kernels; Support Vector Machine and leader�s algorithm.
国家哲学社会科学文献中心版权所有