期刊名称:International Journal on Computer Science and Engineering
印刷版ISSN:2229-5631
电子版ISSN:0975-3397
出版年度:2010
卷号:2
期号:6
页码:2201-2208
出版社:Engg Journals Publications
摘要:Morphological analysis is the basic process for any Natural Language Processing task. Morphology is the study of internal structure of the word. Morphological analysis retrieves the grammatical features and properties of a morphologically inflected word. Capturing the agglutinative structure of Tamil words by an automatic system is a challenging job. Generally rule based approaches are used for building morphological analyzer. In this paper we propose a novel approach to solve the morphological analyzer problem using machine learning methodology. Here morphological analyzer problem is redefined as classification problem. This approach is based on sequence labeling and training by kernel methods that captures the non linear relationships of the morphological features from training data samples in a better and simpler way.