期刊名称:International Journal on Computer Science and Engineering
印刷版ISSN:2229-5631
电子版ISSN:0975-3397
出版年度:2010
卷号:2
期号:3
页码:746-752
出版社:Engg Journals Publications
摘要:In this paper an algorithm is proposed for mining multilevel association rules. A Boolean Matrix based approach has been employed to discover frequent itemsets, the item forming a rule come from different levels. It adopts Boolean relational calculus to discover maximum frequent itemsets at lower level. When using this algorithm first time, it scans the database once and will generate the association rules. Apriori property is used in prune the item sets. It is not necessary to scan the database again; it uses Boolean logical operation to generate the multilevel association rules and also use top-down progressive deepening method.
关键词:association rules; data mining; fuzziness; multilevel rules.