期刊名称:International Journal on Computer Science and Engineering
印刷版ISSN:2229-5631
电子版ISSN:0975-3397
出版年度:2010
卷号:2
期号:2
页码:140-145
出版社:Engg Journals Publications
摘要:Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, a heuristic approach based on particle swarm optimization algorithm is adopted for solving task scheduling problem in grid environment. Particle Swarm Optimization (PSO) is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result.
关键词:Inertia; position updation; velocity; grid computing.