首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Comparison of the Bayesian Network Structure Learning Algorithms
  • 本地全文:下载
  • 作者:Fadhl M. Al-Akwaa ; Mohammed M. Alkhawlani
  • 期刊名称:International Journal of Advanced Research In Computer Science and Software Engineering
  • 印刷版ISSN:2277-6451
  • 电子版ISSN:2277-128X
  • 出版年度:2012
  • 卷号:2
  • 期号:3
  • 出版社:S.S. Mishra
  • 摘要:Understanding gene interactions in complex living systems can be seen as the ultimate goal of the systems biology revolution. Hence, to fully understand disease ontology and to reduce the cost of drug development, Gene Regulatory Networks (GRN) have to be constructed. During the last decade, many GRN inference algorithms like Bayesian network that are based on genome-wide data have been developed to unravel the com-plexity of gene regulation. Recently, many of structure learning algorithms were used to learn Bayesian network that have shown promise in gene regulatory network reconstruction. In this paper we apply different structure learning algorithms on actual microarray data to obtain a better understanding of their relative strengths and weaknesses on the system biology community and we evaluate their outputs from different perspectives
  • 关键词:Bayesian networks; Learning algorithms; Gene regulatory networks; Directed acyclic graph
国家哲学社会科学文献中心版权所有