首页    期刊浏览 2025年02月25日 星期二
登录注册

文章基本信息

  • 标题:Speaker Identification using Mel Frequency Cepstral Coefficient and BPNN
  • 本地全文:下载
  • 作者:Kshamamayee Dash ; Debananda Padhi ; Bhoomika Panda
  • 期刊名称:International Journal of Advanced Research In Computer Science and Software Engineering
  • 印刷版ISSN:2277-6451
  • 电子版ISSN:2277-128X
  • 出版年度:2012
  • 卷号:2
  • 期号:4
  • 出版社:S.S. Mishra
  • 摘要:Speech processing is emerged as one of the important application area of digital signal processing. Various fields for research in speech processing are speech recognition, speaker recognition, speech synthesis, speech coding etc. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. Feature extraction is the first step for speaker recognition. Many algorithms are suggested/developed by the researchers for feature extraction. In this work, the Mel Frequency Cepstrum Coefficient (MFCC) feature has been used for designing a text dependent speaker identification system. BPNN is used for identification of speaker after training the feature set from MFCC. Some modifications to the existing technique of MFCC for feature extraction are also suggested to improve the speaker recognition efficiency. Information from speech recognition can be used in various ways in state-of-the-art speaker recognition systems. This includes the obvious use of recognized words to enable the use of text-dependent speaker modeling techniques when the words spoken are not given. Furthermore, it has been shown that the choice of words and phones itself can be a useful indicator of speaker identity. Also, recognizer output enables higher-level features, in particular those related to prosodic properties of speech
  • 关键词:Speaker identification; BPNN; MFCC; speech processing; feature extraction; speech signal
国家哲学社会科学文献中心版权所有