首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Research on Parameter Optimization of Neural Network
  • 本地全文:下载
  • 作者:Guifang Wu(1) ; Yumin Ren(2) ; Yan Li(1)
  • 期刊名称:International Journal of Hybrid Information Technology
  • 印刷版ISSN:1738-9968
  • 出版年度:2009
  • 卷号:2
  • 期号:1
  • 出版社:SERSC
  • 摘要:Based on researching parameter optimization method of neural network deeply, a new parameter optimization method is presented and applied to surface defect online inspection system of cold rolled strips. The method takes advantages of small-samples fully, and can get a group of neural network parameters which can mostly express the neural network under a certain specific condition. The method is advantageous for its simplicity, easy to maintain and fast, it can be applied to many fields too, such as iron-steel industry, medicine. Experiments showed that a best recognition effect by using the parameters for neural network which are achieved by the new parameter optimization method can be got among all the parameters optimized randomly for surface defect of cold rolled strips
国家哲学社会科学文献中心版权所有