首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Land contribution to natural CO2 variability on time scales of centuries
  • 本地全文:下载
  • 作者:Rainer Schneck ; Christian H. Reick ; Thomas Raddatz
  • 期刊名称:Journal of Advances in Modeling Earth Systems
  • 电子版ISSN:1942-2466
  • 出版年度:2013
  • 卷号:5
  • 期号:2
  • 页码:1-12
  • DOI:10.1002/jame.20029
  • 出版社:John Wiley & Sons, Ltd.
  • 摘要:The present paper addresses the origin of natural variability arising internally from the climate system of the global carbon cycle at centennial time scales. The investigation is based on the Max Planck Institute for Meteorology, Coupled Model Intercomparison Project Phase 5 (MPI‐MCMIP5) preindustrial control simulations with the MPI Earth System Model in low resolution (MPI‐ESM‐LR) supplemented by additional simulations conducted for further analysis. The simulations show a distinct low‐frequency component in the global terrestrial carbon content that induces atmospheric CO2 variations on centennial time scales of up to 3 ppm. The main drivers for these variations are low‐frequency fluctuations in net primary production (NPP) of the land biosphere. The signal arises from small regions scattered across the whole globe with a pronounced source in North America. The main reason for the global NPP fluctuations is found in climatic changes leading to long‐term variations in leaf area index, which largely determines the strength of photosynthetic carbon assimilation. The underlying climatic changes encompass several spatial diverse climatic alterations. For the particular case of North America, the carbon storage changes are (besides NPP) also dependent on soil respiration. This second mechanism is strongly connected to low‐frequency variations in incoming shortwave radiation at the surface.
  • 关键词:carbon cycle;vegetation modeling;atmosphere‐vegetation feedbacks;CMIP5
国家哲学社会科学文献中心版权所有