首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:An Improved Reinforcement Learning System Using Affective Factors
  • 本地全文:下载
  • 作者:Takashi Kuremoto ; Tetsuya Tsurusaki ; Kunikazu Kobayashi
  • 期刊名称:Robotics
  • 电子版ISSN:2218-6581
  • 出版年度:2013
  • 卷号:2
  • 期号:3
  • 页码:149-164
  • DOI:10.3390/robotics2030149
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:As a powerful and intelligent machine learning method, reinforcement learning (RL) has been widely used in many fields such as game theory, adaptive control, multi-agent system, nonlinear forecasting, and so on. The main contribution of this technique is its exploration and exploitation approaches to find the optimal solution or semi-optimal solution of goal-directed problems. However, when RL is applied to multi-agent systems (MASs), problems such as “curse of dimension”, “perceptual aliasing problem”, and uncertainty of the environment constitute high hurdles to RL. Meanwhile, although RL is inspired by behavioral psychology and reward/punishment from the environment is used, higher mental factors such as affects, emotions, and motivations are rarely adopted in the learning procedure of RL. In this paper, to challenge agents learning in MASs, we propose a computational motivation function, which adopts two principle affective factors “Arousal” and “Pleasure” of Russell’s circumplex model of affects, to improve the learning performance of a conventional RL algorithm named Q-learning (QL). Compared with the conventional QL, computer simulations of pursuit problems with static and dynamic preys were carried out, and the results showed that the proposed method results in agents having a faster and more stable learning performance.
  • 关键词:multi-agent system (MAS); computational motivation function; circumplex model of affect; pursuit problem; reinforcement learning (RL)
国家哲学社会科学文献中心版权所有