首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:An O(k2+kh2+h2) Accurate Two-level Implicit Cubic Spline Method for One Space Dimensional Quasi-linear Parabolic Equations
  • 本地全文:下载
  • 作者:Ranjan Kumar Mohanty ; Vijay Dahiya
  • 期刊名称:American Journal of Computational Mathematics
  • 印刷版ISSN:2161-1203
  • 电子版ISSN:2161-1211
  • 出版年度:2011
  • 卷号:1
  • 期号:1
  • 页码:11-17
  • DOI:10.4236/ajcm.2011.11002
  • 出版社:Scientific Research Publishing
  • 摘要:In this piece of work, using three spatial grid points, we discuss a new two-level implicit cubic spline method of O(k2 + kh2 + h4) for the solution of quasi-linear parabolic equation , 0 0 subject to appropriate initial and Dirichlet boundary conditions, where h > 0, k > 0 are grid sizes in space and time-directions, respectively. The cubic spline approximation produces at each time level a spline function which may be used to obtain the solution at any point in the range of the space variable. The proposed cubic spline method is applicable to parabolic equations having singularity. The stability analysis for diffusion- convection equation shows the unconditionally stable character of the cubic spline method. The numerical tests are performed and comparative results are provided to illustrate the usefulness of the proposed method.
  • 关键词:Quasi-Linear Parabolic Equation; Implicit Method; Cubic Spline Approximation; Diffusion-Convection Equation; Singular Equation; Burgers’ Equation; Reynolds Number
国家哲学社会科学文献中心版权所有