首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:First Order Convergence Analysis for Sparse Grid Method in Stochastic Two-Stage Linear Optimization Problem
  • 本地全文:下载
  • 作者:Shengyuan Chen
  • 期刊名称:American Journal of Computational Mathematics
  • 印刷版ISSN:2161-1203
  • 电子版ISSN:2161-1211
  • 出版年度:2011
  • 卷号:1
  • 期号:4
  • 页码:294-302
  • DOI:10.4236/ajcm.2011.14036
  • 出版社:Scientific Research Publishing
  • 摘要:Stochastic two-stage linear optimization is an important and widely used optimization model. Efficiency of numerical integration of the second stage value function is critical. However, the second stage value function is piecewise linear convex, which imposes challenges for applying the modern efficient spare grid method. In this paper, we prove the first order convergence rate of the sparse grid method for this important stochastic optimization model, utilizing convexity analysis and measure theory. The result is two-folded: it establishes a theoretical foundation for applying the sparse grid method in stochastic programming, and extends the convergence theory of sparse grid integration method to piecewise linear and convex functions.
  • 关键词:Convergence Analysis; Stochastic Optimization; Scenario Generation; Convex Analysis; Measure Theory
国家哲学社会科学文献中心版权所有