摘要:Steady state and time resolved fluorescence spectroscopy, combined with molecular dynamics simulation, have been used to explore the interactions of a therapeutically important bioflavonoid, genistein, with normal human hemoglobin (HbA). Binding constants estimated from the fluorescence studies were K = (3.5 ± 0.32) ×104M-1 for genistein. Specific interactions with HbA were confirmed from flavonoid-induced fluorescence quenching of the tryptophan in the protein HbA. The mechanism of this quenching involves both static and dynamic components as indicated by: (a) increase in the values of Stern-Volmer quenching constants with temperatures, (b) / is slightly > 1 (where and are the unquenched and quenched tryptophan fluorescence lifetimes (averaged) respectively). Molecular docking and dynamic simulations reveal that genistein binds between the subunits of HbA, ~18 Å away from the closest heme group of chain α1, emphasizing the fact that the drug does not interfere with oxygen binding site of HbA.
关键词:Natural Drug Carrier; Fluorescence; Circular Dichroism; Molecular Dynamics; Docking