期刊名称:International Journal of Intelligence Science
印刷版ISSN:2163-0283
电子版ISSN:2163-0356
出版年度:2012
卷号:2
期号:3
页码:55-62
DOI:10.4236/ijis.2012.23008
出版社:Scientific Research Publishing
摘要:In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.