首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Combining Generative/Discriminative Learning for Automatic Image Annotation and Retrieval
  • 本地全文:下载
  • 作者:Zhixin Li ; Zhenjun Tang ; Weizhong Zhao
  • 期刊名称:International Journal of Intelligence Science
  • 印刷版ISSN:2163-0283
  • 电子版ISSN:2163-0356
  • 出版年度:2012
  • 卷号:2
  • 期号:3
  • 页码:55-62
  • DOI:10.4236/ijis.2012.23008
  • 出版社:Scientific Research Publishing
  • 摘要:In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to model visual features of images in generative learning stage and uses ensembles of classifier chains to classify the multi-label data in discriminative learning stage. Since the framework combines the advantages of generative and discriminative learning, it can predict semantic annotation precisely for unseen images. Finally, we conduct a series of experiments on a standard Corel dataset. The experiment results show that our approach outperforms many state-of-the-art approaches.
  • 关键词:Automatic Image Annotation; Continuous PLSA; Semantic Gap; Hybrid Approach; Image Retrieval
国家哲学社会科学文献中心版权所有