首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:LP-SVR Model Selection Using an Inexact Globalized Quasi-Newton Strategy
  • 本地全文:下载
  • 作者:Pablo Rivas-Perea ; Juan Cota-Ruiz ; J. A. Perez Venzor
  • 期刊名称:Journal of Intelligent Learning Systems and Applications
  • 印刷版ISSN:2150-8402
  • 电子版ISSN:2150-8410
  • 出版年度:2013
  • 卷号:5
  • 期号:1
  • 页码:19-28
  • DOI:10.4236/jilsa.2013.51003
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper we study the problem of model selection for a linear programming-based support vector machine for regression. We propose generalized method that is based on a quasi-Newton method that uses a globalization strategy and an inexact computation of first order information. We explore the case of two-class, multi-class, and regression problems. Simulation results among standard datasets suggest that the algorithm achieves insignificant variability when measuring residual statistical properties.
  • 关键词:Hyper-Parameter Estimation; Support Vector Regression; Machine Learning; Data Mining
国家哲学社会科学文献中心版权所有