首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Multi-Sensor Ensemble Classifier for Activity Recognition
  • 本地全文:下载
  • 作者:Lingfei Mo ; Shaopeng Liu ; Robert X. Gao
  • 期刊名称:Journal of Software Engineering and Applications
  • 印刷版ISSN:1945-3116
  • 电子版ISSN:1945-3124
  • 出版年度:2012
  • 卷号:5
  • 期号:12B
  • 页码:113-116
  • DOI:10.4236/jsea.2012.512B022
  • 出版社:Scientific Research Publishing
  • 摘要:This paper presents a multi-sensor ensemble classifier (MSEC) for physical activity (PA) pattern recognition of human subjects. The MSEC, developed for a wearable multi-sensor integrate measurement system (IMS),combines multiple classifiers based on different sensor feature sets to improve the accuracy of PA type identification.Experimental evaluation of 56 subjects has shown that the MSECis more effectivein assessing activities of varying intensitiesthan the traditional homogeneous classifiers. It is able to correctly recognize 6 PA types with an accuracy of 93.50%, which is 7% higher than the non-ensemble support vector machine method. Furthermore, the MSECis effective in reducing the subject-to-subject variabilityin activity recognition.
  • 关键词:Physical Activity Assessment;Multi-Sensor Ensemble;Support Vector Machine
国家哲学社会科学文献中心版权所有