首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:RLS Wiener Predictor with Uncertain Observations in Linear Discrete-Time Stochastic Systems
  • 本地全文:下载
  • 作者:Seiichi Nakamori ; Raquel Caballero-Águila ; Aurora Hermoso-Carazo
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2011
  • 卷号:2
  • 期号:3
  • 页码:152-158
  • DOI:10.4236/jsip.2011.23019
  • 出版社:Scientific Research Publishing
  • 摘要:This paper proposes recursive least-squares (RLS) l-step ahead predictor and filtering algorithms with uncertain observations in linear discrete-time stochastic systems. The observation equation is given by y(k)=y(k)z(k)+v(k), z(k)=Hx(k), where {y(k)} is a binary switching sequence with conditional probability. The estimators require the information of the system state-transition matrix Ф, the observation matrix H, the variance K(k,k) of the state vector x(k), the variance R(k) of the observation noise, the probability p(k)=p{y(k)=1} that the signal exists in the uncertain observation equation and the (2,2) element [p(k|j)]2,2 of the conditional probability of y(k), given y(j).
  • 关键词:Estimation Theory; Synthesis of Stochastic Systems; RLS Wiener Predictor; Uncertain Observations; Markov Probability
国家哲学社会科学文献中心版权所有