首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Least Squares Matrix Algorithm for State-Space Modelling of Dynamic Systems
  • 本地全文:下载
  • 作者:Juuso T. Olkkonen ; Hannu Olkkonen
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2011
  • 卷号:2
  • 期号:4
  • 页码:287-291
  • DOI:10.4236/jsip.2011.24041
  • 出版社:Scientific Research Publishing
  • 摘要:This work presents a novel least squares matrix algorithm (LSM) for the analysis of rapidly changing systems using state-space modelling. The LSM algorithm is based on the Hankel structured data matrix representation. The state transition matrix is updated without the use of any forgetting function. This yields a robust estimation of model parameters in the presence of noise. The computational complexity of the LSM algorithm is comparable to the speed of the conventional recursive least squares (RLS) algorithm. The knowledge of the state transition matrix enables feasible numerical operators such as interpolation, fractional differentiation and integration. The usefulness of the LSM algorithm was proved in the analysis of the neuroelectric signal waveforms.
  • 关键词:State-Space Modelling; Dynamic System Analysis; EEG
国家哲学社会科学文献中心版权所有