摘要:This paper presents an intra-modal fusion environment to integrate multiple raw palm images at low level. Fusion of palmprint instances is performed by wavelet transform and decomposition. To capture the palm characteristics, the fused image is convolved with Gabor wavelet transform. The Gabor wavelet based feature representation reflects very high dimensional space. To reduce the high dimensionality, ant colony optimization algorithm is applied to consider only relevant, distinctive and reduced feature set from Gabor responses. Finally, the reduced set of features is trained with support vector machines and accomplished user recognition tasks. For evaluation, CASIA multispectral palmprint database is used. The experimental results reveal that the system is robust and encouraging while variations of classifiers are used.
关键词:Palmprint Verification; Multispectral Image Fusion; Gabor Wavelet Filters; Ant Colony Optimization; Support Vector Machines