首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Heart Murmur Recognition Based on Hidden Markov Model
  • 本地全文:下载
  • 作者:Lisha Zhong ; Jiangzhong Wan ; Zhiwei Huang
  • 期刊名称:Journal of Signal and Information Processing
  • 印刷版ISSN:2159-4465
  • 电子版ISSN:2159-4481
  • 出版年度:2013
  • 卷号:4
  • 期号:2
  • 页码:140-144
  • DOI:10.4236/jsip.2013.42020
  • 出版社:Scientific Research Publishing
  • 摘要:Heart murmur recognition and classification play an important role in the auscultative diagnosis. The method based on hidden markov model (HMM) was presented to recognize the heart murmur. The murmur was isolated on basis of the principle of wavelet analysis considering the time-frequency characteristics of the heart murmur. This method uses Mel frequency cepstral coefficient (MFCC) to extract representative features and develops hidden Markov model (HMM) for signal classification. The result shows that this method is able to recognize the murmur efficiently and superior to BP neural network (94.2% vs 82.8%). And the findings suggest that the method may have the potential to be used to assist doctors for a more objective diagnosis.
  • 关键词:Heart Murmur; Wavelet Threshold De-Noising; Mel Frequency Cepstrum; Hidden Markov Model
国家哲学社会科学文献中心版权所有