摘要:In this paper, we proposed an optimized real-time hybrid cooperative multi-camera tracking system for large-scale au-tomate surveillance based on embedded smart cameras including stationary cameras and moving pan/tilt/zoom (PTZ) cameras embedded with TI DSP TMS320DM6446 for intelligent visual analysis. Firstly, the overlapping areas and projection relations between adjacent cameras' field of view (FOV) is calculated. Based on the relations of FOV ob-tained and tracking information of each single camera, a homography based target handover procedure is done for long-term multi-camera tracking. After that, we fully implemented the tracking system on the embedded platform de-veloped by our group. Finally, to reduce the huge computational complexity, a novel hierarchical optimization method is proposed. Experimental results demonstrate the robustness and real-time efficiency in dynamic real-world environ-ments and the computational burden is significantly reduced by 98.84%. Our results demonstrate that our proposed sys-tem is capable of tracking targets effectively and achieve large-scale surveillance with clear detailed close-up visual features capturing and recording in dynamic real-life environments.