首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Tail Quantile Estimation of Heteroskedastic Intraday Increases in Peak Electricity Demand
  • 本地全文:下载
  • 作者:Caston Sigauke ; Andréhette Verster ; Delson Chikobvu
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2012
  • 卷号:2
  • 期号:4
  • 页码:435-442
  • DOI:10.4236/ojs.2012.24054
  • 出版社:Scientific Research Publishing
  • 摘要:Modelling of intraday increases in peak electricity demand using an autoregressive moving average-exponential generalized autoregressive conditional heteroskedastic-generalized single Pareto (ARMA-EGARCH-GSP) approach is discussed in this paper. The developed model is then used for extreme tail quantile estimation using daily peak electricity demand data from South Africa for the period, years 2000 to 2011. The advantage of this modelling approach lies in its ability to capture conditional heteroskedasticity in the data through the EGARCH framework, while at the same time estimating the extreme tail quantiles through the GSP modelling framework. Empirical results show that the ARMA-EGARCH-GSP model produces more accurate estimates of extreme tails than a pure ARMA-EGARCH model.
  • 关键词:Conditional Extreme Value Theory; Daily Electricity Peak Demand; Volatility; Tail Quantiles
国家哲学社会科学文献中心版权所有