首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Permafrost degradation and methane: low risk of biogeochemical climate-warming feedback
  • 本地全文:下载
  • 作者:Xiang Gao ; C Adam Schlosser ; Andrei Sokolov
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2013
  • 卷号:8
  • 期号:3
  • 页码:035014-035014
  • DOI:10.1088/1748-9326/8/3/035014
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:Climate change and permafrost thaw have been suggested to increase high latitude methane emissions that could potentially represent a strong feedback to the climate system. Using an integrated earth-system model framework, we examine the degradation of near-surface permafrost, temporal dynamics of inundation (lakes and wetlands) induced by hydro-climatic change, subsequent methane emission, and potential climate feedback. We find that increases in atmospheric CH4 and its radiative forcing, which result from the thawed, inundated emission sources, are small, particularly when weighed against human emissions. The additional warming, across the range of climate policy and uncertainties in the climate-system response, would be no greater than 0.1 ° C by 2100. Further, for this temperature feedback to be doubled (to approximately 0.2 ° C) by 2100, at least a 25-fold increase in the methane emission that results from the estimated permafrost degradation would be required. Overall, this biogeochemical global climate-warming feedback is relatively small whether or not humans choose to constrain global emissions.
国家哲学社会科学文献中心版权所有