首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Extending K-Anonymity to Privacy Preserving Data Mining Using Association Rule Hiding Algorithm
  • 本地全文:下载
  • 作者:Dr.R. Sugumar ; Dr.A.Rengarajan ; M.Vijayanand
  • 期刊名称:International Journal of Advanced Research In Computer Science and Software Engineering
  • 印刷版ISSN:2277-6451
  • 电子版ISSN:2277-128X
  • 出版年度:2012
  • 卷号:2
  • 期号:6
  • 出版社:S.S. Mishra
  • 摘要:Privacy Preserving Data Mining is a research area concerned with the privacy driven from personally identifiable information when considered for data mining. k-anonymity is one of the most classic models, which prevents joining attacks by generalizing or suppressing portions of the released micro data so that no individual can be uniquely distinguished from a group of size k. This paper focuses on how to extend k -anonymity to privacy preserving data mining using association rule hiding algorithm. Association rule hiding algorithm refers to the process of mod ifying the original database in such a way that certain sensitive association rules disappear without seriously affecting the data and the non sensitive rules.
  • 关键词:K-anonymity; Privacy Preserving Data Mining; Association Rule Hiding; Generalization.
国家哲学社会科学文献中心版权所有