首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Planar Subgraph Isomorphism Revisited
  • 本地全文:下载
  • 作者:Dorn, Frederic
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2010
  • 卷号:5
  • DOI:10.4230/LIPIcs.STACS.2010.2460
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The problem of {\sc Subgraph Isomorphism} is defined as follows: Given a \emph{pattern} $H$ and a \emph{host graph} $G$ on $n$ vertices, does $G$ contain a subgraph that is isomorphic to $H$? Eppstein [SODA 95, J'GAA 99] gives the first linear time algorithm for subgraph isomorphism for a fixed-size pattern, say of order $k$, and arbitrary planar host graph, improving upon the $O(n^{\sqrt{k}})$-time algorithm when using the ``Color-coding'' technique of Alon et al [J'ACM 95]. Eppstein's algorithm runs in time $k^{O(k)} n$, that is, the dependency on $k$ is superexponential. We improve the running time to $2^{O(k)} n$, that is, single exponential in $k$ while keeping the term in $n$ linear. Next to deciding subgraph isomorphism, we can construct a solution and count all solutions in the same asymptotic running time. We may enumerate $\omega$ subgraphs with an additive term $O(\omega k)$ in the running time of our algorithm. We introduce the technique of ``embedded dynamic programming'' on a suitably structured graph decomposition, which exploits the number and topology of the underlying drawings of the subgraph pattern (rather than of the host graph).
  • 关键词:Graph algorithms; Subgraph Isomorphism; NP-hard problems; Dynamic programming; Topological graph theory
国家哲学社会科学文献中心版权所有