首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:A Novel Learning Scheme for Chebyshev Functional Link Neural Networks
  • 本地全文:下载
  • 作者:Satchidananda Dehuri
  • 期刊名称:Advances in Artificial Neural Systems
  • 印刷版ISSN:1687-7594
  • 电子版ISSN:1687-7608
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/107498
  • 出版社:Hindawi Publishing Corporation
  • 摘要:A hybrid learning scheme (ePSO-BP) to train Chebyshev Functional Link Neural Network (CFLNN) for classification is presented. The proposed method is referred as hybrid CFLNN (HCFLNN). The HCFLNN is a type of feed-forward neural networks which have the ability to transform the nonlinear input space into higher dimensional-space where linear separability is possible. Moreover, the proposed HCFLNN combines the best attribute of particle swarm optimization (PSO), back propagation learning (BP learning), and functional link neural networks (FLNNs). The proposed method eliminates the need of hidden layer by expanding the input patterns using Chebyshev orthogonal polynomials. We have shown its effectiveness of classifying the unknown pattern using the publicly available datasets obtained from UCI repository. The computational results are then compared with functional link neural network (FLNN) with a generic basis functions, PSO-based FLNN, and EFLN. From the comparative study, we observed that the performance of the HCFLNN outperforms FLNN, PSO-based FLNN, and EFLN in terms of classification accuracy.
国家哲学社会科学文献中心版权所有