首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Quasi-Non-Destructive Evaluation of Yield Strength Using Neural Networks
  • 本地全文:下载
  • 作者:G. Partheepan ; D. K. Sehgal ; R. K. Pandey
  • 期刊名称:Advances in Artificial Neural Systems
  • 印刷版ISSN:1687-7594
  • 电子版ISSN:1687-7608
  • 出版年度:2011
  • 卷号:2011
  • DOI:10.1155/2011/607374
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The objective of this paper is to delineate a method for determining the yield strength of a material in a virtually nondestructive manner. Conventional test methods for predicting the yield strength require the removal of large material samples from the in-service component, which is impractical. In this paper, the power of neural networks in predicting the yield strength from the data obtained by conducting tension test on newly developed dumb-bell-shaped miniature specimen is demonstrated using the self-organizing capabilities of the ANN. The input to the neural network is the breakaway load obtained from the miniature test, and the output obtained from the model is yield strength value. The value of the yield strength estimated by neural network is found to be in good agreement (<5% error) with that of the actual value from the standard test. The neural network models are convenient and powerful tools for practical applications in solving various problems in engineering.
国家哲学社会科学文献中心版权所有