摘要:The stochastic joint replenishment and delivery scheduling (JRD) problem is a key issue in supply chain management and is a major concern for companies. So far, all of the work on stochastic JRDs is under explicit environment. However, the decision makers often have to face vague operational conditions. We develop a practical JRD model with stochastic demand under fuzzy backlogging cost, fuzzy minor ordering cost, and fuzzy inventory holding cost. The problem is to determine procedures for inventory management and vehicle routing simultaneously so that the warehouse may satisfy demand at a minimum long-run average cost. Subsequently, the fuzzy total cost is defuzzified by the graded mean integration representation and centroid approaches to rank fuzzy numbers. To find optimal coordinated decisions, a modified adaptive differential evolution algorithm (MADE) is utilized to find the minimum long-run average total cost. Results of numerical examples indicate that the proposed JRD model can be used to simulate fuzzy environment efficiently, and the MADE outperforms genetic algorithm with a lower total cost and higher convergence rate. The proposed methods can be applied to many industries and can help obtaining optimal decisions under uncertain environment.