摘要:For many years, toxicological studies in animals have been used to determine potential health risks in humans. There are increasing concerns that such an approach is costly in terms of the resources required to conduct the tests and may not provide sufficient information to adequately protect human health. The growing backlog of chemicals yet to be assessed for potential human health hazards has led to calls to develop high throughput, low-cost testing strategies using end points that are more relevant to humans (Hartung 2009). In 2007, the U.S. National Research Council (NRC) released a landmark report, Toxicity Testing in the 21st Century: A Vision and a Strategy (NRC 2007), that envisioned a revolutionary change in the future of toxicity testing. A similar approach has been described by AXLR8 (AXLR8 Consortium 2011), a project funded under the European Commission’s Seventh Framework Programme. These documents from the NRC and AXLR8 Consortium articulate the current effort to increase efficiency and decrease animal use in toxicity testing by transitioning from in vivo tests with qualitative end points to in vitro assays based on human cells or cell lines that use robotic high throughput screening and mechanistic quantitative parameters. Implementation of such a strategy could foster a new paradigm that enhances human relevance of toxicological studies, thereby allowing regulatory decisions to be based on human rather than animal biology (Hartung 2009; Schmidt 2009).