首页    期刊浏览 2025年02月16日 星期日
登录注册

文章基本信息

  • 标题:New Nonpolynomial Spline in Compression Method of <svg style="vertical-align:-3.186pt;width:95.125px;" id="M1" height="24.6625" version="1.1" viewBox="0 0 95.125 24.6625" width="95.125" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.022,-0,0,-.022,.062,20.788)"><path id="x1D442" d="M745 361q0 -166 -116 -272t-291 -106q-136 0 -225.5 83t-89.5 218q0 161 115.5 272t288.5 111q137 0 227.5 -83t90.5 -223zM643 359q0 126 -56 199.5t-167 73.5q-130 0 -213.5 -104t-83.5 -246q0 -117 58 -190.5t165 -73.5q91 0 160.5 52t103 128.5t33.5 160.5z" /></g><g transform="matrix(.022,-0,0,-.022,17.278,20.788)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.022,-0,0,-.022,25.034,20.788)"><path id="x1D458" d="M480 416q0 -21 -18 -41q-9 -11 -17 -7q-20 9 -42 9q-62 0 -140 -78q23 -69 88 -192q17 -31 27 -42t20 -11q16 0 62 46l17 -20q-64 -92 -119 -92q-35 0 -70 66q-41 73 -84 187q-36 -30 -62 -61q-27 -115 -35 -172q-41 -8 -78 -20l-6 6l140 612q7 28 0.5 34t-37.5 7l-34 1&#xA;l5 26q38 4 74 13.5t57 17t25 7.5q12 0 4 -32l-104 -443h2q35 38 97 93q39 35 65.5 56t62 41.5t58.5 20.5q19 0 30.5 -10t11.5 -22z" /></g> <g transform="matrix(.016,-0,0,-.016,36.312,10.025)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.022,-0,0,-.022,49.45,20.788)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z" /></g><g transform="matrix(.022,-0,0,-.022,67.562,20.788)"><path id="x210E" d="M499 88q-41 -46 -83.5 -73t-68.5 -27q-41 0 -19 98l52 225q10 43 8 59.5t-16 16.5q-37 0 -112 -65t-117 -135q-14 -42 -38 -179q-36 -7 -75 -20l-7 8l127 594q8 40 2.5 49t-35.5 9h-35l5 25q36 3 71.5 13t56.5 18t25 8q11 0 3 -38l-88 -417h2q77 102 195 167q44 24 79 24&#xA;q61 0 30 -130l-52 -220q-8 -33 4 -33q8 0 31 14.5t43 33.5z" /></g> <g transform="matrix(.016,-0,0,-.016,79.15,10.025)"><path id="x34" d="M456 178h-96v-72q0 -51 12.5 -62.5t72.5 -16.5v-27h-256v27q65 5 78 17t13 62v72h-260v28q182 271 300 426h40v-407h96v-47zM280 225v295h-2q-107 -148 -196 -295h198z" /></g> <g transform="matrix(.022,-0,0,-.022,87.3,20.788)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> for the Solution of 1D Wave Equation in Polar Coordinates
  • 本地全文:下载
  • 作者:Venu Gopal ; R. K. Mohanty ; Navnit Jha
  • 期刊名称:Advances in Numerical Analysis
  • 印刷版ISSN:1687-9562
  • 电子版ISSN:1687-9570
  • 出版年度:2013
  • 卷号:2013
  • DOI:10.1155/2013/470480
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose a three-level implicit nine point compact finite difference formulation of order two in time and four in space direction, based on nonpolynomial spline in compression approximation in -direction and finite difference approximation in -direction for the numerical solution of one-dimensional wave equation in polar coordinates. We describe the mathematical formulation procedure in detail and also discussed the stability of the method. Numerical results are provided to justify the usefulness of the proposed method.
国家哲学社会科学文献中心版权所有