首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Bayesian Inference of a Linear Segmented Regression Model
  • 本地全文:下载
  • 作者:C. A. R. DINIZ ; L. A. MILAN ; J. MAZUCHELI
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2003
  • 卷号:17
  • 期号:1
  • 页码:1-16
  • 出版社:Brazilian Statistical Association
  • 摘要:Robust Bayesian Inference in a linear-linear segmented re-gression model, assuming non-homogeneous error variance, is explored forcases in which the errors follow Student's t distributions. Metropolis-within-Gibbs algorithms are used in order to estimate the posterior distribution ofthe change point and the model parameters. The methodology is illustratedby the analysis of two simulated data sets and a real data set from a clinicalstudy designed to determine the anaerobic threshold of a healthy male duringdynamic exercise
  • 关键词:Bayesian analysis; metropolis-within-Gibbs algorithm; seg-;mented regression models
国家哲学社会科学文献中心版权所有