首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Improved Maximum Likelihood Estimation in a New Class of Beta Regression Models
  • 本地全文:下载
  • 作者:K. L. P. VASCONCELLOS ; F. CRIBARI-NETO
  • 期刊名称:Brazilian Journal of Probability and Statistics
  • 印刷版ISSN:0103-0752
  • 出版年度:2005
  • 卷号:19
  • 期号:1
  • 页码:13-31
  • 出版社:Brazilian Statistical Association
  • 摘要:We propose a class of regression models where the responseis beta distributed and the two parameters that index the beta distributionare related to covariates and regression parameters. The proposed class ofmodels is useful for modeling data that are restricted to the (0, 1) interval.We discuss maximum likelihood estimation of the parameters that define theregression structure of the model, and derive closed-form expressions for thesecond order biases of these estimators. The derived expressions are then usedto define bias-corrected maximum likelihood estimators. Simulation resultsshow that the bias correction scheme yields nearly unbiased estimators
  • 关键词:Beta distribution; bias correction; maximum likelihood es-;timation; regression
国家哲学社会科学文献中心版权所有