首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Cost-effective Sampling Design Applied to Large-scale Monitoring of Boreal Birds
  • 本地全文:下载
  • 作者:Matthew Carlson ; Fiona Schmiegelow
  • 期刊名称:Ecology and Society
  • 印刷版ISSN:1708-3087
  • 电子版ISSN:1708-3087
  • 出版年度:2002
  • 卷号:6
  • 期号:2
  • 出版社:The Resilience Alliance
  • 摘要:Despite their important roles in biodiversity conservation, large-scale ecological monitoring programs are scarce, in large part due to the difficulty of achieving an effective design under fiscal constraints. Using long-term avian monitoring in the boreal forest of Alberta, Canada as an example, we present a methodology that uses power analysis, statistical modeling, and partial derivatives to identify cost-effective sampling strategies for ecological monitoring programs. Empirical parameter estimates were used in simulations that estimated the power of sampling designs to detect trend in a variety of species’ populations and community metrics. The ability to detect trend with increased sample effort depended on the monitoring target’s variability and how effort was allocated to sampling parameters. Power estimates were used to develop nonlinear models of the relationship between sample effort and power. A cost model was also developed, and partial derivatives of the power and cost models were evaluated to identify two cost-effective avian sampling strategies. For decreasing sample error, sampling multiple plots at a site is preferable to multiple within-year visits to the site, and many sites should be sampled relatively infrequently rather than sampling few sites frequently, although the importance of frequent sampling increases for variable targets. We end by stressing the need for long-term, spatially extensive data for additional taxa, and by introducing optimal design as an alternative to power analysis for the evaluation of ecological monitoring program designs.
  • 关键词:allocation of sample effort; boreal birds; community metrics; cost-effective sample design; forest bird populations; long-term monitoring; partial derivatives; power analysis; sample error; temporal and spatial variation; trend detection.
国家哲学社会科学文献中心版权所有