首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:K-Means Clustering Approach to Analyze NSL-KDD Intrusion Detection Dataset
  • 本地全文:下载
  • 作者:Vipin Kumar ; Himadri Chauhan ; Dheeraj Panwar
  • 期刊名称:International Journal of Soft Computing & Engineering
  • 电子版ISSN:2231-2307
  • 出版年度:2013
  • 卷号:3
  • 期号:4
  • 页码:1-4
  • 出版社:International Journal of Soft Computing & Engineering
  • 摘要:Clustering is the most acceptable technique to analyze the raw data. Clustering can help detect intrusions when our training data is unlabeled, as well as for detecting new and unknown types of intrusions. In this paper we are trying to analyze the NSL-KDD dataset using Simple K-Means clustering algorithm. We tried to cluster the dataset into normal and four of the major attack categories i.e. DoS, Probe, R2L, U2R. Experiments are performed in WEKA environment. Results are verified and validated using test dataset. Our main objective is to provide the complete analysis of NSL-KDD intrusion detection dataset.
  • 关键词:Clustering; K-means; NSL-KDD Dataset; ;WEKA.
国家哲学社会科学文献中心版权所有